解决全程对最短路径问题的 Floyd-Warshall 算法(未竟)

算法思路

递归式

$$
d_{ij}^{(k)} =
\left{
\begin{matrix}
\begin{align}
& \omega_{ij} && {if \quad k = 0} \
& min(d_{ij}^{(k - 1)}, d_{ik}^{(k - 1)} + d_{kj}^{(i - 1)}) && {if \quad k \geqslant 1} \
\end{align}
\end{matrix}
\right.
$$

伪码

一个例子

图1

根据图1计算出的矩阵序列

Python 代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# -*- coding: utf-8 -*-
# @File : floyd_warshall.py
# @Author: FanLu
# @Date : 2021/5/18

# 利用 Floyd-Warshall 算法计算全成对最短路径
def floydWarshall(W:list):
n = len(W)
D_list = [[] for i in range(n + 1)] # 一共需要 n + 1 个 D
D_list[0] = [[0 for i in range(n + 1)] for i in range(n + 1)]
# 前驱矩阵 PI
PI = [[] for i in range(n + 1)]
PI[0] = [[0 for i in range(n + 1)] for i in range(n + 1)]
# 初始化 D_list[0]
for i in range(1, n + 1):
for j in range(1, n + 1):
D_list[0][i][j] = W[i - 1][j - 1]
# 初始化 PI[0]
for i in range(1, n + 1):
for j in range(1, n + 1):
if i == j or W[i - 1][j - 1] == float('inf'): # 这里的坐标注意取值
PI[0][i][j] = None
if i != j and W[i - 1][j - 1] < float('inf'):
PI[0][i][j] = i
# 开始迭代
for k in range(1, n + 1):
D_list[k] = [[0 for i in range(n + 1)] for i in range(n + 1)] # 索引为 0 的元素抛弃不用
PI[k] = [[0 for i in range(n + 1)] for i in range(n + 1)] # 索引为 0 的元素抛弃不用
for i in range(1, n + 1):
for j in range(1, n + 1):
# 构造 D_list
D_list[k][i][j] = min(D_list[k - 1][i][j], D_list[k - 1][i][k] + D_list[k - 1][k][j])
# 构造 PI
if D_list[k - 1][i][j] <= D_list[k - 1][i][k] + D_list[k - 1][k][j]:
PI[k][i][j] = PI[k - 1][i][j]
else:
PI[k][i][j] = PI[k - 1][k][j]
# return D_list
return [D_list, PI]

# print all pairs shortest path
def printAPSP(PI: list, i: int, j: int):
if i == j:
print(i, end=' ')
elif PI[i][j] == None:
print('no path from "i" to "j" exits')
else:
printAPSP(PI, i, PI[i][j])
print(j, end=' ')

def print_matrix(matrix:list):
for each in matrix:
each = each[1:]
for one in each:
one = one[1:]
print(one)
print('--------')

if __name__ == '__main__':
W = [[0, 3, 8, float('inf'), -4],
[float('inf'), 0, float('inf'), 1, 7],
[float('inf'), 4, 0, float('inf'), float('inf')],
[2, float('inf'), -5, 0, float('inf')],
[float('inf'), float('inf'), float('inf'), 6, 0]]
res = floydWarshall(W)
for each in res[0]:
each = each[1:]
for one in each:
one = one[1:]
print(one)
print('---------')
print('===================================================')
for each in res[1]:
each = each[1:]
for one in each:
one = one[1:]
print(one)
print('---------')

# 打印从 i 到 j 的路径
for i in range(1, len(W) + 1):
for j in range(1, len(W) + 1):
print('节点' + i.__str__() + '到节点' + j.__str__() + '的最短路径为: ', end='')
printAPSP(res[1][len(res[1]) - 1], i, j)
print()

运行结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
[0, 3, 8, inf, -4]
[inf, 0, inf, 1, 7]
[inf, 4, 0, inf, inf]
[2, inf, -5, 0, inf]
[inf, inf, inf, 6, 0]
---------
[0, 3, 8, inf, -4]
[inf, 0, inf, 1, 7]
[inf, 4, 0, inf, inf]
[2, 5, -5, 0, -2]
[inf, inf, inf, 6, 0]
---------
[0, 3, 8, 4, -4]
[inf, 0, inf, 1, 7]
[inf, 4, 0, 5, 11]
[2, 5, -5, 0, -2]
[inf, inf, inf, 6, 0]
---------
[0, 3, 8, 4, -4]
[inf, 0, inf, 1, 7]
[inf, 4, 0, 5, 11]
[2, -1, -5, 0, -2]
[inf, inf, inf, 6, 0]
---------
[0, 3, -1, 4, -4]
[3, 0, -4, 1, -1]
[7, 4, 0, 5, 3]
[2, -1, -5, 0, -2]
[8, 5, 1, 6, 0]
---------
[0, 1, -3, 2, -4]
[3, 0, -4, 1, -1]
[7, 4, 0, 5, 3]
[2, -1, -5, 0, -2]
[8, 5, 1, 6, 0]
---------
===================================================
[None, 1, 1, None, 1]
[None, None, None, 2, 2]
[None, 3, None, None, None]
[4, None, 4, None, None]
[None, None, None, 5, None]
---------
[None, 1, 1, None, 1]
[None, None, None, 2, 2]
[None, 3, None, None, None]
[4, 1, 4, None, 1]
[None, None, None, 5, None]
---------
[None, 1, 1, 2, 1]
[None, None, None, 2, 2]
[None, 3, None, 2, 2]
[4, 1, 4, None, 1]
[None, None, None, 5, None]
---------
[None, 1, 1, 2, 1]
[None, None, None, 2, 2]
[None, 3, None, 2, 2]
[4, 3, 4, None, 1]
[None, None, None, 5, None]
---------
[None, 1, 4, 2, 1]
[4, None, 4, 2, 1]
[4, 3, None, 2, 1]
[4, 3, 4, None, 1]
[4, 3, 4, 5, None]
---------
[None, 3, 4, 5, 1]
[4, None, 4, 2, 1]
[4, 3, None, 2, 1]
[4, 3, 4, None, 1]
[4, 3, 4, 5, None]
---------
节点1到节点1的最短路径为: 1
节点1到节点2的最短路径为: 1 5 4 3 2
节点1到节点3的最短路径为: 1 5 4 3
节点1到节点4的最短路径为: 1 5 4
节点1到节点5的最短路径为: 1 5
节点2到节点1的最短路径为: 2 4 1
节点2到节点2的最短路径为: 2
节点2到节点3的最短路径为: 2 4 3
节点2到节点4的最短路径为: 2 4
节点2到节点5的最短路径为: 2 4 1 5
节点3到节点1的最短路径为: 3 2 4 1
节点3到节点2的最短路径为: 3 2
节点3到节点3的最短路径为: 3
节点3到节点4的最短路径为: 3 2 4
节点3到节点5的最短路径为: 3 2 4 1 5
节点4到节点1的最短路径为: 4 1
节点4到节点2的最短路径为: 4 3 2
节点4到节点3的最短路径为: 4 3
节点4到节点4的最短路径为: 4
节点4到节点5的最短路径为: 4 1 5
节点5到节点1的最短路径为: 5 4 1
节点5到节点2的最短路径为: 5 4 3 2
节点5到节点3的最短路径为: 5 4 3
节点5到节点4的最短路径为: 5 4
节点5到节点5的最短路径为: 5

解决全程对最短路径问题的 Floyd-Warshall 算法(未竟)
http://fanlumaster.github.io/2021/06/01/解决全程对最短路径问题的-Floyd-Warshall-算法/
作者
fanlumaster
发布于
2021年6月1日
许可协议