LeetCode 排列,组合,子集问题相关算法题专项整理

78. 子集

回溯法套路。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from typing import List


class Solution:
def subsets(self, nums: List[int]) -> List[List[int]]:
self.res = []

def backtrack(curRes: List, startIndex: int):
self.res.append(curRes.copy())
for i in range(startIndex, len(nums)):
curRes += [nums[i]]
backtrack(curRes, i + 1)
curRes.pop()
backtrack([], 0)
return self.res


if __name__ == '__main__':
solu = Solution()
print(solu.subsets([1, 2, 3]))

另一种思路是和递归思路比较像,很巧妙。也可以说是动态规划。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from typing import List


class Solution:
def subsets(self, nums: List[int]) -> List[List[int]]:
res = [[]]
for num in nums:
res += [item + [num] for item in res]
return res


if __name__ == '__main__':
solu = Solution()
print(solu.subsets([1, 2, 3]))

77. 组合

依然是回溯。只不过,根据条件剪去了一些情况。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from typing import List


class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
self.res = []
self.curRes = []

def backtrack(start: int, n: int, k: int):
if (len(self.curRes) == k):
self.res.append(self.curRes.copy())
return
for i in range(start, n + 1):
self.curRes.append(i)
backtrack(i + 1, n, k)
self.curRes.pop()

backtrack(1, n, k)
return self.res


if __name__ == '__main__':
solu = Solution()
print(solu.combine(4, 2))

46. 全排列

使用回溯,这里使用了备忘录,即 self.used,用来记录是否使用过某一个元素。所以我们在回溯之后要恢复两个东西,一个是备忘录,另一个是 curRes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from typing import List


class Solution:
def permute(self, nums: List[int]) -> List[List[int]]:
self.res = []
self.curRes = []
self.used = [False] * len(nums)

def backtrack(nums: List[int]):
if len(self.curRes) == len(nums):
self.res.append(self.curRes.copy())
for i in range(len(nums)):
if self.used[i]:
continue
self.curRes.append(nums[i])
self.used[i] = True
backtrack(nums)
self.used[i] = False
self.curRes.pop()

backtrack(nums)
return self.res


if __name__ == '__main__':
s = Solution()
print(s.permute([1, 2, 3]))

另一种,递归,有一点巧妙:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
from typing import List


class Solution:
def permute(self, nums: List[int]) -> List[List[int]]:
def permutation(nums):
if len(nums) == 1:
yield nums[0:1]
else:
for perm in permutation(nums[1:]):
for i in range(len(perm) + 1):
yield perm[:i] + nums[0:1] + perm[i:]
return list(permutation(nums))


if __name__ == '__main__':
s = Solution()
print(s.permute([1, 2, 3]))

90. 子集 II

调试花了一点时间。因为一开始 backtrack(i + 1, nums) 里面的 i 搞成了 start

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from typing import List


class Solution:
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
self.res = []
self.curRes = []
nums.sort()

def backtrack(start: int, nums: List[int]):
self.res.append(self.curRes.copy())

for i in range(start, len(nums)):
if i > start and nums[i] == nums[i - 1]:
continue
self.curRes.append(nums[i])
backtrack(i + 1, nums)
self.curRes.pop()

backtrack(0, nums)
return self.res


if __name__ == "__main__":
s = Solution()
print(s.subsetsWithDup([1, 2, 2]))

40. 组合总和 II

使用回溯方法解决:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from typing import List


class Solution:
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
self.curRes = []
self.res = []
self.trackSum = 0
candidates.sort()

def backtrack(start: int, candidates: List[int], target):
if self.trackSum == target:
self.res.append(self.curRes.copy())
return
if self.trackSum > target:
return

for i in range(start, len(candidates)):
# 除去重复元素的情况
if i > start and candidates[i] == candidates[i - 1]:
continue
self.curRes.append(candidates[i])
self.trackSum += candidates[i]
backtrack(i + 1, candidates, target)
self.trackSum -= candidates[i]
self.curRes.pop()

backtrack(0, candidates, target)
return self.res


if __name__ == "__main__":
s = Solution()
print(s.combinationSum2([10, 1, 2, 7, 6, 1, 5], 8))
# print(s.combinationSum2([2, 5, 2, 1, 2], 5))
# print(s.combinationSum2([2, 5, 2, 1, 2], 6))

之前使用 dfs 解决,其实也是回溯:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from typing import List


class Solution:
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
def dfs(candidates: List[int], target: int, path: List[int], res: List[List[int]]) -> None:
if target == 0:
res.append(path)
return
for i in range(len(candidates)):
if target - candidates[i] < 0:
break
if i > 0 and candidates[i] == candidates[i - 1]:
continue
dfs(candidates[i + 1:], target - candidates[i],
path + [candidates[i]], res)

res = []
candidates.sort()
dfs(candidates, target, [], res)
return res


if __name__ == '__main__':
s = Solution()
print(s.combinationSum2([10, 1, 2, 7, 6, 1, 5], 8))
print(s.combinationSum2([2, 5, 2, 1, 2], 5))
print(s.combinationSum2([2, 5, 2, 1, 2], 6))

47. 全排列 II

回溯加上剪枝。这里的剪枝有一定的技巧性。

对于剪枝的判断:重复元素,前面的元素一定要在当前元素之前使用。

还有,一定要先给数组排序!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from typing import List


class Solution:
def permuteUnique(self, nums: List[int]) -> List[List[int]]:
self.curRes = []
self.res = []
self.used = [False] * len(nums)
nums.sort()

def backtrack(nums: List[int]):
if len(self.curRes) == len(nums):
self.res.append(self.curRes.copy())

for i in range(len(nums)):
if self.used[i]:
continue
if i > 0 and nums[i] == nums[i - 1] and not self.used[i - 1]:
continue
self.curRes.append(nums[i])
self.used[i] = True
backtrack(nums)
self.used[i] = False
self.curRes.pop()

backtrack(nums)
return self.res


if __name__ == "__main__":
s = Solution()
# print(s.permuteUnique([1, 1, 2]))
print(s.permuteUnique([3, 3, 0, 3]))

39. 组合总和

回溯的时候,start 变了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from typing import List


class Solution:
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
self.curRes = []
self.res = []
self.trackSum = 0
candidates.sort()

def backtrack(start: int, nums: List[int], target: int):
if self.trackSum == target:
self.res.append(self.curRes.copy())
if self.trackSum > target:
return

for i in range(start, len(nums)):
self.curRes.append(nums[i])
self.trackSum += nums[i]
backtrack(i, nums, target)
self.trackSum -= nums[i]
self.curRes.pop()

backtrack(0, candidates, target)
return self.res


if __name__ == '__main__':
s = Solution()
print(s.combinationSum([2, 7, 6, 3, 5, 1], 9))

之前的做法,类似:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from typing import List


class Solution:
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
def dfs(candidates: List[int], target: int, path: List[int], res: List[List[int]]) -> None:
if target == 0:
res.append(path)
return
for i in range(len(candidates)):
if target - candidates[i] < 0:
break
dfs(candidates[i:], target - candidates[i],
path + [candidates[i]], res)

res = []
candidates.sort()
dfs(candidates, target, [], res)
return res


if __name__ == '__main__':
s = Solution()
print(s.combinationSum([2, 7, 6, 3, 5, 1], 9))

216. 组合总和 III

依然是回溯加上简单的剪枝。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from typing import List


class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
self.curRes = []
self.res = []
self.trackSum = 0
self.trackCount = 0

def backtrack(start: int, k: int, n: int):
if self.trackSum == n and self.trackCount == k:
self.res.append(self.curRes.copy())

if self.trackSum > n or self.trackCount > k:
return

for i in range(start, 10):
self.curRes.append(i)
self.trackSum += i
self.trackCount += 1
backtrack(i + 1, k, n)
self.trackCount -= 1
self.trackSum -= i
self.curRes.pop()

backtrack(1, k, n)
return self.res


if __name__ == "__main__":
solu = Solution()
print(solu.combinationSum3(3, 7))
print(solu.combinationSum3(3, 9))


LeetCode 排列,组合,子集问题相关算法题专项整理
http://fanlumaster.github.io/2022/03/13/LeetCode-排列,组合,子集问题相关算法题专项整理/
作者
fanlumaster
发布于
2022年3月13日
许可协议